Bayesian hierarchical modeling of means and covariances of gene expression data within families
نویسندگان
چکیده
We describe a hierarchical Bayes model for the influence of constitutional genotypes from a linkage scan on the expression of a large number of genes. The model comprises linear regression models for the means in relation to genotypes and for the covariances between pairs of related individuals in relation to their identity-by-descent estimates. The matrices of regression coefficients for all possible pairs of single-nucleotide polymorphisms (SNPs) by all possible expressed genes are in turn modeled as a mixture of null values and a normal distribution of non-null values, with probabilities and means given by a third-level model of SNP and trait random effects and a spatial regression on the distance between the SNP and the expressed gene. The latter provides a way of testing for cis and trans effects. The method was applied to data on 116 SNPs and 189 genes on chromosome 11, for which Morley et al. (Nature 2004, 430: 743-747) had previously reported linkage. We were able to confirm the association of the expression of HSD17B12 with a SNP in the same region reported by Morley et al., and also detected a SNP that appeared to affect the expression of many genes on this chromosome. The approach appears to be a promising way to address the huge multiple comparisons problem for relating genome-wide genotype x expression data.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملComments on "Bayesian hierarchical error model for analysis of gene expression data"
Cho and Lee (2004) proposed a Bayesian hierarchical error model (HEM) to account for heterogeneous error variability in oligonucleotide microarray experiments. They estimated the parameters of their model using Markov Chain Monte Carlo (MCMC) and proposed an F-like summary statistic to identify differentially expressed genes under multiple conditions. Their HEM is one of the emerging Bayesian h...
متن کاملDNA Microarrays and Gene Expression - From Experiments to Data Analysis and Modeling
dna microarrays and gene expression assets dna microarrays and gene expression from experiments to dna microarrays and gene expression: from experiments to dna microarrays and gene expression dna microarrays and gene expressionfrom experiments to dna microarrays and gene expression: from experiments to dna microarrays and computational analysis final sln a4.... microarray data integration and t...
متن کاملHierarchical Bayesian Methods to Model Heterogeneity in Cow- and Herd-level Relationships between Milk Production and Reproduction in Dairy Cows
Two of the most important broad classifications of phenotypes for successful dairy production are milk yield and fertility. The nature of the relationship between milk production and reproductive performance of dairy cows is uncertain due to conflicting results reported in many studies. A common deficiency in many such studies is an underappreciation of the dual dimension of the production-repr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Proceedings
دوره 1 شماره
صفحات -
تاریخ انتشار 2007